Công thức phép quay là một phần quan yếu trong chương trình Toán lớp 11, Đây là một công thức khá phức tạp, đòi hỏi những bạn học trò phải tìm hiểu và tập luyện nhiều. Nhằm giúp những bạn học trò nắm chắc được tri thức quan yếu này, trang web dự đoán thời tiết Việt Nam sẽ giới thiệu tới những bạn những tri thức đầy đủ nhất về lý thuyết, và bài tập minh họa về phép quay, những bạn hãy cùng tham khảo nhé
Lý thuyết về công thức phép quay
Khái niệm phép quay
Cho Một điểm O và góc lượng giác α. Phép biến hình biến điểm O thành chính nó và biến mỗi điểm M khác O thành điểm M’ sao cho OM’ = OM và góc lượng giác (OM; OM’) bằng α được gọi là phép quay tâm O góc α .
- Điểm O được gọi là tâm quay, α là góc quay của phép quay đó.
- Phép quay tâm O góc α biến điểm M thành M’ được kí hiệu là Q(O,α)
Tính chất của phép quay
- Phép quay sẽ bảo toàn khoảng cách giữa hai điểm
- Phép quay biến đường thẳng thành đường thẳng và Biến đoạn thẳng thành đoạn thẳng bằng nó
- Biến một tam giác thành tam giác bằng nó và biến một đường tròn thành đường tròn sở hữu cùng bán kính.
Công thức phép quay
- Phép quay tâm O, góc 900: Q(o;90o) [ M(x;y)] = M’(x’;y’). Lúc đó:
- Phép quay tâm O, góc -900: Q(o;-90o) [ M(x;y)] = M’(x’;y’). Lúc đó:
- Phép quay tâm O, góc 1800: Q(o;180o) [ M(x;y)] = M’(x’;y’). Lúc đó:
Công thức tổng quát
Phép quay tâm O, góc quay α: Q(O,α) [ M(x;y)] = M’(x’;y’).
Phép quay tâm I(a;b), góc quay α: Q(I, ∞) [ M(x;y)] = M’(x’;y’).
Ví dụ minh họa về công thức phép quay
Ví dụ 1: Trong một mặt phẳng sở hữu tọa độ Oxy cho điểm A(-1;5).
1) Tìm tọa độ điểm B là ảnh của điểm A thông qua phép quay tâm O(0; 0) góc quay –900 .
2) Tìm tọa độ điểm C là ảnh của điểm A thông qua phép quay tâm O(0; 0) góc quay 450 .
Hướng dẫn giải
1) Điểm B là ảnh của điểm A thông qua phép quay Q(O,-90o)
Cách 1: Vẽ hình
Dựa vào hình vẽ, ta suy ra B(5;1).
Cách 2: Ứng dụng theo công thức:
2) Điểm C là ảnh của điểm A thông qua phép quay Q(O,45o)
Ví dụ 2: Trong mặt phẳng sở hữu tọa độ Oxy cho một đường thẳng d: 5x – 3y + 15 = 0.
Hãy tìm đường thẳng d’ là ảnh của d thông qua phép quay tâm O(0;0) góc quay –900 (Sử dụng công thức phép quay) .
Hướng dẫn giải
Cách 1:
Bởi vì Q(O,-90o)(d) = d’ nên d' ⊥ d. Do vậy, phương trình d’ sở hữu dạng: 3x + 5y + c = 0.
Lấy điểm M(-3;0) ∈ d, gọi M’(x’;y’) ∈ d’ là ảnh của điểm M qua phép quay Q(O,-90o)
Vì M'(0;-3) ∈ d' nên 3.0 + 5.3 + c = 0 ⇒ c = -15
Vậy d’ sở hữu phương trình là 3x + 5y – 15 = 0.
Cách 2:
Với mọi điểm M(x;y) ∈ d, M’(x’;y’) ∈ d’ sao cho Q(O,-90o)(M) = M’.
Bài tập công thức phép quay
Câu 1. Trong mặt phẳng Oxy, cho M(1;-5). Hãy tìm ảnh của M thông qua phép quay tâm O, góc quay 900
- N(5;1) B. N(5;-1) C. N(1;5) D. N(1;-5)
Câu 2. Trong một mặt phẳng sở hữu tọa độ Oxy, cho đường thẳng d: 5x – 2y + 3 = 0. Viết phương trình đường thẳng d’ là ảnh của đường thẳng d thông qua phép quay tâm O, góc quay -1800
- d’: 5x – 2y + 6 = 0 B. d’: 5x – 2y – 3 = 0
- d’: 2x – 5y – 3 = 0 D. d’: 2x – 5y + 6 = 0
Câu 3. Trong một mặt phẳng sở hữu tọa độ Oxy, cho đường tròn (C): x2 + y2 + 6x + 5 = 0. Ảnh của đường tròn (C) qua phép quay tâm O, góc quay 900 là:
- x2 + (y – 3)=22 = 4 B. x2 + y2 + 6x – 6 = 0
- x2 + (y + 3)=22 = 4 D. x2 + y2 + 6x – 5 = 0
Đáp án 1A, 2B, 3C
Qua bài viết này, chúng tôi hi vọng những bạn đã sở hữu thể hiểu rõ hơn về công thức phép quay, cũng như làm những bài tập ví dụ để nắm chắc được tri thức thú vị này. Đừng bỏ lỡ những bài viết tiếp theo về giáo dục của chúng tôi nhé